Γ-flatness and Bishop–Phelps–Bollobás type theorems for operators

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extreme Flatness of Normed Modules and Arveson-wittstock Type Theorems

We show in this paper that a certain class of normed modules over the algebra of all bounded operators on a Hilbert space possesses a homological property which is a kind of a functional-analytic version of the standard algebraic property of flatness. We mean the preservation, under projective tensor multiplication of modules, of the property of a given morphism to be isometric. As an applicati...

متن کامل

Direct Approximation Theorems for Discrete Type Operators

In the present paper we prove direct approximation theorems for discrete type operators (Lnf)(x) = ∞ ∑ k=0 un,k(x)λn,k(f), f ∈ C[0,∞), x ∈ [0,∞) using a modified K−functional. As applications we give direct theorems for Baskakov type operators, Szász-Mirakjan type operators and Lupaş operator.

متن کامل

Sandwich-type theorems for a class of integral operators with special properties

In the present paper, we prove subordination, superordination and sandwich-type properties of a certain integral operators for univalent functions on open unit disc, moreover the special behavior of this class is investigated.

متن کامل

Ovidiu T . Pop VORONOVSKAJA - TYPE THEOREMS AND APPROXIMATION THEOREMS FOR A CLASS OF GBS OPERATORS

In this paper we will demonstrate a Voronovskajatype theorems and approximation theorems for GBS operators associated to some linear positive operators. Through particular cases, we obtain statements verified by the GBS operators of Bernstein, Schurer, Durrmeyer, Kantorovich, Stancu, BleimannButzer-Hahn, Mirakjan-Favard-Szász, Baskakov, Meyer-König and Zeller, Ismail-May.

متن کامل

Robertson-type Theorems for Countable Groups of Unitary Operators

Let G be a countably infinite group of unitary operators on a complex separable Hilbert space H. Let X = {x1, ..., xr} and Y = {y1, ..., ys} be finite subsets of H, r < s, V0 = spanG(X), V1 = spanG(Y ) and V0 ⊂ V1. We prove the following result: Let W0 be a closed linear subspace of V1 such that V0 ⊕ W0 = V1 (i.e., V0 + W0 = V1 and V0 ∩ W0 = {0}). Suppose that G(X) and G(Y ) are Riesz bases for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2018

ISSN: 0022-1236

DOI: 10.1016/j.jfa.2017.10.020